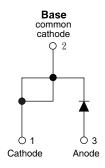


FRED Ultrafast Soft Recovery Diode, 15 A

FEATURES

- Ultrafast and ultrasoft recovery
- Very low I_{RRM} and Q_{rr}
- Compliant to RoHS
- Designed and qualified for industrial level

BENEFITS


- Reduced RFI and EMI
- Reduced power loss in diode and switching transistor
- Higher frequency operation
- Reduced snubbing
- · Reduced parts count

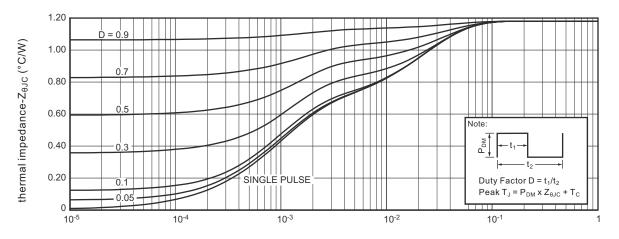
DESCRIPTION

HFA15PB120 is a state of the art ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 1200V and 15 A continuous current, the HFA15PB120 is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the FRED product line features extremely low values of peak recovery current (IRRM) and does not exhibit any tendency to "snap-off" during the tb portion of recovery. The FRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These FRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The FRED HFA15PB120 is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

TO-247 AC modified

PRODUCT SUMMARY	
Package	TO-247AC modified (2 pins)
I _{F(AV)}	15A
V _R	1200 V
V _F at I _{F,} at 25°C	3.0 V
t _{rr} (typ.)	30 ns
T _J max.	150°C
Diode variation	Single die

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Cathode to anode voltage	V _R		600	V			
Maximum continuous forward current	I _F	T _C = 120 °C	15				
Single pulse forward current	I _{FSM}		140	Α			
Maximum repetitive forward current	I _{FRM}		60				
Maximum power dissipation	Б	T _C = 25 °C	75	W			
	P _D	T _C = 100 °C	30				
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C			


ELECTRICAL SPECIFICA	ATIONS	G (T _J = 25 °C unless otherwise specified)				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Cathode to anode breakdown voltage	V _{BR}	Ι _R = 100 μΑ	1200	-	-	
		I _F = 15 A	-	2.5	3.0	V
Maximum forward voltage	V_{FM}	I _F = 30 A	-	3.0	-	
		I _F = 15 A, T _J = 125 °C	-	2.3	-	
Maximum reverse	I IRM	V _R = V _R rated	-	1	20	
leakage current		T _J = 125°C, V _R = V _R rated	-	-	500	μA
Junction capacitance	C _T	V _R = 200V - 17		-	pF	
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	12	-	nH

DYNAMIC RECOVERY CHARACTERISTICS PERLEG (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS			TYP.	MAX.	UNITS
Reverse recovery time	+	I _F = 0.5A, I _R = 1.0A, I _{RR} = 250mA (RG#1 CKT)		-	28	33	- ns
	t _{rr}	$I_F = 1.0 \text{ A}, \text{ d}I_F/\text{d}t = -200 \text{ A/µs}, V_R = 30 \text{ V}, T_J = 25^{\circ}\text{C}$		-	30	-	
	t _{rr1}	T _J = 25 °C	I _F = 15A dI _F /dt = -200 A/μs V _R = 800 V	-	240	60	- A
	t _{rr2}	T _J = 125 °C		-	290	120	
Peak recovery current	I _{RRM1}	T _J = 25 °C		-	3	6.0	
	I _{RRM2}	T _J = 125 °C		-	6	10	
Reverse recovery charge	Q _{rr1}	T _J = 25 °C		-	260	180	nC
	Q _{rr2}	T _J = 125 °C		-	960	600	
Peak rate of fall of recovery current during t _b	dl _{(rec)M} /dt1	T _J = 25 °C		-	120	-	Λ/ι.ο
	dI _{(rec)M} /dt2	T _J = 125 °C		-	76	-	A/µs

THERMAL - MECHANICAL SPECIFICATIONS PER LEG							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Lead temperature	T _{lead}	0.063" from case (1.6 mm) for 10 s	-	-	300	°C	
Junction to case, single leg conduction	В		-	-	1.20		
Junction to case, both legs conducting	- R _{thJC}		-	-	41	K/\\	
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	41	1 K/W	
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.26	-		
Weight			-	6.0	-	g	
			-	0.21	-	OZ.	
Mounting torque			6.0 (5.0)	-	12 (10)	kgf . cm (lbf . in)	
Marking device		Case style TO-247AC (JEDEC)	HFA15PA120				

Fig.1 Maximum effective transient thermal impedance, junction-to-case vs. pulse duration

Rectangular pulse duration (seconds)

Fig.2 Forward current vs. forward voltage

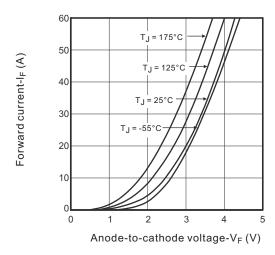


Fig.4 Reverse recovery charge vs. current rate of change

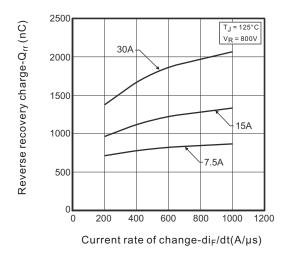


Fig3. Reverse recovery time vs. current rate of change

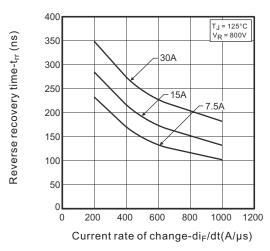


Fig. 5 Reverse recovery current vs. current rate of change

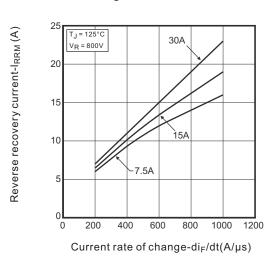


Fig6. Dynamic parameters vs. junction temperature

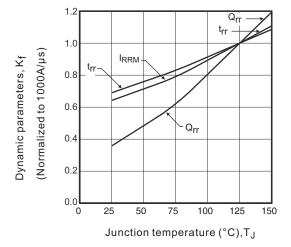


Fig.7 Maximum average forward current vs. case temperature

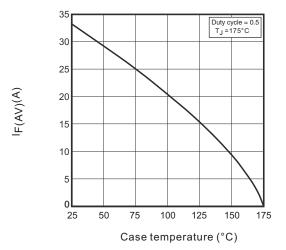


Fig.8 Junction capacitance vs. reverse voltage

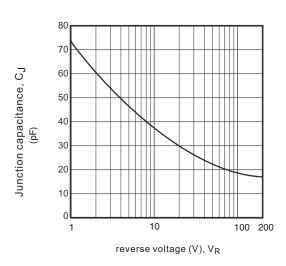


Fig.9 Reverse recovery parameter test circuit

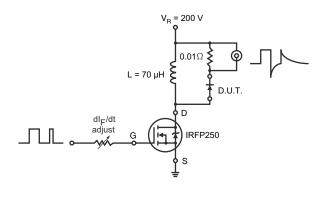
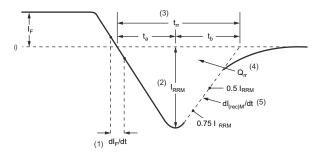
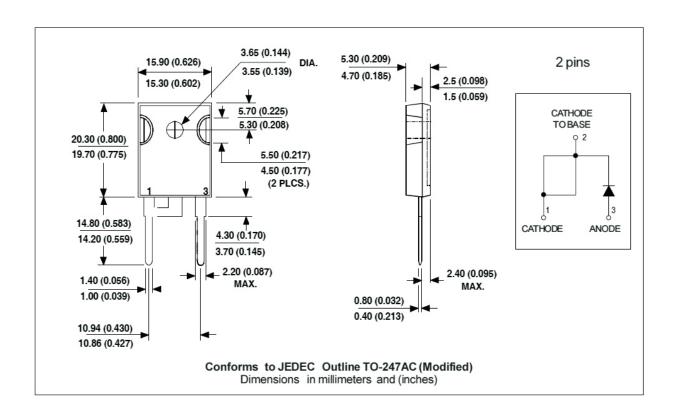




Fig.10 Reverse recovery waveform and definitions

- (1) dI_F/dt rate of change of current through zero crossing
- (4) ${\rm Q_{rr}}$ area under curve defined by ${\rm t_{rr}}$ and ${\rm I_{RRM}}$
- (2) I_{RRM} peak reverse recovery current
- $Q_{rr} = \frac{t_{rr} x^{T}_{RRM}}{2}$
- (3) $t_{\rm rr}$ reverse recovery time measured from zero crossing point of negative going $I_{\rm F}$ to point where a line passing through 0.75 $I_{\rm RRM}$ and 0.50 $I_{\rm RRM}$ extrapolated to zero current.
- (5) dI_{(rec)M}/dt peak rate of change of current during t_b portion of t_{rr}

ORDERING INFORMATION TABLE

Device code N - HFA 15 PB 120

- 1 Nell Semiconductors product
- 2 FRED family
- 3 Current rating (15 =15A)
- 4 PB = TO-247AC modified

 5 Voltage rating: (120 = 1200 V)